Mineral Industry Surveys

For information, contact:

James F. Carlin, Jr., Tin Commodity Specialist

U.S. Geological Survey

989 National Center
Reston, VA 20192
Telephone: (703) 648-4985, Fax: (703) 648-7757
E-mail: jcarlin@usgs.gov

Linda M. White (Data)
Telephone: (703) 648-7986
Fax: (703) 648-7975
E-mail: lwhite@usgs.gov

Internet: http://minerals.usgs.gov/minerals

TIN IN FEBRUARY 2011

Domestic consumption of primary tin in February 2011 was estimated to be 2,250 metric tons (t), a slight decrease from that in January 2011 and an 11\% increase from that in February 2010. Imports for consumption of tin in February 2011 were 2,650 t, a decrease of 38% from that in January 2011 and the same as that in February 2010.
The Platts Metals Week average composite price of tin in February 2011 was $\$ 18.85$ per pound, compared with $\$ 16.45$ per pound in January 2011 and $\$ 10.09$ per pound in February 2010.

According to an official at Malaysia Smelting Corp. (MSC) (Kuala Lumpur, Malaysia), the current high tin prices were the result of supply-demand fundamentals rather than speculation. He noted two basic factors that have been restricting the world tin supply-current low tin ore grades and restrictions on tin mining in Indonesia (the world's leading tin exporter). MSC was the world's third leading supplier of tin in 2009, producing about 43,900 t of refined tin (Wijaya, 2011).
A team of researchers from five universities announced the development of a new high-temperature material that is 60%
better at converting heat to electricity than comparable thermoelectronics. The material, which is a nanocomposite, is stable up to temperatures as high as $700^{\circ} \mathrm{C}$. It could therefore potentially be used to boost the fuel efficiency of cars by recovering energy from vehicle's exhaust heat. The material is composed of antimony, cobalt, hafnium, tin, and zirconium (Johnston, 2011).

Update

On June 24, 2011, the Platts Metals Week composite price for tin was $\$ 15.16$ per pound.

References Cited

Johnston, Hamish, ed., 2011, Nanoparticles boost thermoelectric efficiency: Physics World, 2 p. (Accessed January 31, 2011, at http://physicsworld.com/cws/article/news/44902.)
Wijaya, Megawati, 2011, Tin could hit $\$ 40,000$ as supply lag worsens, says MSC’s Anuar: Metal Bulletin, no. 9185, January 31, p. 6.

TABLE 1
SALIENT TIN STATISTICS ${ }^{1}$
(Metric tons, unless otherwise noted)

		2011		
	$2010^{\text {p }}$	January	February	JanuaryFebruary
Production, secondary ${ }^{\text {e, } 2}$	11,100	922	922	1,840
Consumption:				
Primary	26,900	2,260	2,250	4,510
Secondary	6,220	522	519	1,040
Imports for consumption, metal	35,300	4,290	2,650	6,940
Exports, metal	5,630	329	751	1,080
Stocks at end of period	6,920	6,660	6,540	6,540
Prices (average cents per pound): ${ }^{3}$				
Metals Week composite ${ }^{4}$	1,239.64	1,644.54	1,885.16	XX
Metals Week New York dealer	954.13	1,283.44	1,462.50	XX
London, standard grade, cash	925.15	1,244.93	1,429.11	XX
Kuala Lumpur	922.17	1,260.19	1,436.84	XX

${ }^{e}$ Estimated. ${ }^{\mathrm{P}}$ Preliminary. XX Not applicable.
${ }^{1}$ Data are rounded to no more than three significant digits, except prices.
${ }^{2}$ Includes tin recovered from alloys and tinplate. The detinning of tinplate (coated steel) yields only a small part of the total.
${ }^{3}$ Source: Platts Metals Week.
${ }^{4}$ The Metals Week composite price is a calculated formula, not a market price, that includes fixed and finance charges and a risk factor. It is normally substantially higher than other tin prices.

TABLE 2
METALS WEEK COMPOSITE PRICE ${ }^{1}$
(Cents per pound)

Period	High	Low	Average
2010	$1,719.49$	937.69	$1,239.64$
$2011:$			
January	$1,802.34$	$1,583.57$	$1,644.54$
February	$1,937.62$	$1,798.67$	$1,885.16$

${ }^{1}$ The Metals Week composite price is a calculated formula, not a market price, that includes fixed and finance charges and a risk factor. It is normally substantially higher than other tin prices.

Source: Platts Metals Week.

TABLE 3
TINPLATE PRODUCTION AND SHIPMENTS IN THE UNITED STATES ${ }^{1}$
(Metric tons, unless otherwise noted)

Period	Tinplate waste (waste, strips, cobbles, etc.) (gross weight)	Tinplate (all forms)			
		Gross weight	$\begin{gathered} \text { Tin } \\ \text { content } \end{gathered}$	Tin per metric ton of plate (kilograms)	Shipments ${ }^{2}$
2010	18,200	1,420,000	6,920	4.9	2,030,000
2011:					
January	1,860	101,000	528	5.2	118,000
February	1,840	95,500	502	5.3	117,000

${ }^{1}$ Data are rounded to no more than three significant digits.
${ }^{2}$ Source: American Iron and Steel Institute monthly publication.

TABLE 4
U.S. TIN IMPORTS FOR CONSUMPTION AND EXPORTS ${ }^{1}$
(Metric tons)

Country or product	2010	2011		
		January	February	JanuaryFebruary
Imports:				
Metal (unwrought tin):				
Belgium	--	250	2	252
Bolivia	6,060	699	290	989
Brazil	75	100	--	100
Chile	641	60	--	60
China	887	393	360	753
Indonesia	3,970	255	268	523
Malaysia	4,500	160	--	160
Peru	16,500	1,570	1,330	2,900
Singapore	996	76	--	76
Thailand	1,310	725	400	1,130
Other	327	--	1	1
Total	35,300	4,290	2,650	6,940
Other (gross weight):				
Alloys	1,290	247	106	353
Bars and rods	3,190	211	254	465
Foil, tubes, pipes	80	14	1	15
Plates, sheets, strip	135	5	--	5
Waste and scrap	57,300	4,970	4,640	9,600
Miscellaneous	3,540	148	201	349
Total	65,500	5,590	5,200	10,800
Exports (metal)	5,630	329	751	1,080

-- Zero.
${ }^{1}$ Data are rounded to no more than three significant digits; may not add to totals shown.
Source: U.S. Census Bureau.

TABLE 5
CONSUMPTION OF TIN IN THE UNITED STATES, BY FINISHED PRODUCT ${ }^{1}$
(Metric tons of contained tin)

Product	$2010{ }^{\text {p }}$	2011						
		January			February			JanuaryFebruary
		Primary	Secondary	Total	Primary	Secondary	Total	
Alloys (miscellaneous) ${ }^{3}$	6,070	561	W	561	561	W	561	1,130
Babbitt	220	16	W	16	16	W	16	38
Bar tin and anodes	239	6	--	6	6	--	6	12
Bronze and brass	2,000	87	70	157	113	67	181	338
Chemicals	2,590	212	W	212	213	W	213	425
Collapsible tubes and foil	W	W	W	W	W	W	W	W
Solder	3,710	172	142	314	171	142	313	627
Tinning	331	33	--	33	25	--	25	58
Tinplate ${ }^{4}$	6,600	528	--	528	502	--	502	1,030
Tin powder	192	15	W	15	15	W	15	32
White metal ${ }^{5}$	W	W	W	W	W	W	W	W
Other	416	28	11	38	28	11	38	62
Total reported	22,400	1,660	222	1,880	1,650	219	1,870	3,750
Estimated undistributed consumption ${ }^{6}$	10,800	600	300	900	600	300	900	1,800
Grand total	33,200	2,260	522	2,780	2,250	519	2,770	5,550

${ }^{\mathrm{p}}$ Preliminary. W Withheld to avoid disclosing company proprietary data; included with "Other." -- Zero.
${ }^{1}$ Data are rounded to no more than three significant digits; may not add to totals shown.
${ }^{2}$ May include revisions to previous month(s) data.
${ }^{3}$ Includes terne metal.
${ }^{4}$ Includes secondary pig tin and tin components of tinplating chemical solutions.
${ }^{5}$ Includes pewter, britannia metal, and jewelers' metal.
${ }^{6}$ Estimated consumption of plants reporting on an annual basis.

